

Available online at www.sciencedirect.com

Journal of Organometallic Chemistry 689 (2004) 672-677

Journal ofOrgano metallic Chemistry

www.elsevier.com/locate/jorganchem

Reversible oxidative addition of a diaryl diselenide to a diorganopalladium(II) complex, carbon-selenium bond formation at palladium(IV), and structural studies of palladium(II) and platinum(IV) selenolates

Allan J. Canty ^{a,*}, Melanie C. Denney ^a, Jim Patel ^a, Huailin Sun ^a, Brian W. Skelton ^b, Allan H. White ^b

^a School of Chemistry, University of Tasmania, Private Bag 75, Hobart 7001, Tasmania, Australia ^b School of Biomedical and Chemical Sciences, University of Western Australia, Crawley 6009, Western Australia, Australia

Received 23 October 2003; accepted 4 December 2003

Abstract

Methyl(4-methoxyphenyl)(2,2'-bipyridine)palladium(II) (1) reacts with bis(4-chlorophenyl) diselenide in dichloromethane to form an equilibrium with the Pd(IV) complex Pd(SeC₆H₄Cl)₂Me(C₆H₄OMe)(bpy) (2) for which the forward reaction exhibits $\Delta H = -130 \pm 12 \text{ kJ mol}^{-1}$ and $\Delta S = -472 \pm 49 \text{ J K}^{-1} \text{ mol}^{-1}$, and with $K = 754 \pm 145 \text{ at } -25 \text{ °C}$. The Pd(IV) complex is isolable at -40 °C, and when the equilibrium mixture is kept at -25 °C, a temperature at which the Pd(II) complex is stable, selective reductive elimination of Me–SeC₆H₄Cl occurs very slowly from the Pd(IV) complex to form Pd(SeC₆H₄Cl)(C₆H₄OMe)(bpy) (3). In contrast, (ClC₆H₄Se)₂ reacts with PdMe₂(dmpe) (4) [dmpe = 1,2-bis(dimethylphosphino)ethane] to form Pd(SeC₆H₄Cl)Me(dmpe) (5) and Me–SeC₆H₄Cl. A second equivalent of (ClC₆H₄Se)₂ reacts with 5 to cleave the second Pd–Me bond to give Pd(SeC₆H₄Cl)₂(dmpe) (6) and Me–SeC₆H₄Cl. Similarly, PdMeTol(dmpe) (7) (Tol=4-tolyl) forms predominantly Pd(SeC₆H₄Cl)Tol(dmpe) (8) together with some Pd(SeC₆H₄Cl)Me(dmpe) (5), and 8 reacts with (ClC₆H₄Se)₂ to form Pd(SeC₆H₄Cl)₂(dmpe) (6) and Tol-SeC₆H₄Cl. Bis(4-chlorophenyl) diselenide reacts with PtTol₂(bpy) (9) (Tol = 4-tolyl) to form Pt(SeC₆H₄Cl)₂(dmpe) (6) and Tol-SeC₆H₄Cl. Bis(4-chlorophenyl) diselenide reacts with PtTol₂(bpy) (9) (Tol = 4-tolyl) to form Pt(SeC₆H₄Cl)₂(bpy) (10) which, together with 2, has a trans-configuration for the selenolate ligands. X-ray structural studies of octahedral 10 as the solvate 10 · 3CHCl₃ and square planar 5 are reported.

© 2003 Elsevier B.V. All rights reserved.

1. Introduction

Formation of carbon(sp²)-heteroatom bonds by reductive elimination from Pd(IV) centres has been proposed in catalytic processes for C–O bond formation [1–3]. Model reactions relevant to this catalysis have been reported, but coupling from a Pd(IV) intermediate containing both Pd–C and Pd–O bonds has not been detected [4]. However, related carbon–selenium bond formation from Pd(IV) species such as Pd(SePh)₂Me₂ (L₂) [L₂ = 2,2'-bipyridine] (Eq. (1)) has been documented, with coupling involving a C(sp³) group [5]. We report here studies of a Pd(IV) complex containing both alkyl and aryl groups, Pd(SeC₆H₄Cl)₂Me(C₆H₄OMe)(bpy) (**2**) (SeC₆H₄Cl = 4-chloroselenophenolate, C₆H₄OMe = 4methoxyphenyl), to probe selectivity in C(sp²)–Se and C(sp³)–Se bond formation. This approach has led to detection of a reversible oxidative addition of (ClC₆H₄Se)₂ to PdMe(C₆H₄OMe)(bpy) (**1**), related to a similar equilibrium reported for Pt(II) exemplified in Eq. (2) [6].

$$PdMe_{2}(bpy) \xrightarrow{(PhSe)_{2}} Pd(SePh)_{2}Me_{2}(bpy)$$

$$\rightarrow Me-Me + Me-SePh$$
(1)

$$PtMe\{CH(CO_2Me)_2\}(4, 4'-Bu'_2bpy) + (PhSe)_2 = Pt(SePh)_2Me\{CH(CO_2Me)_2\}(4, 4'-Bu'_2-bpy)$$
(2)

^{*} Corresponding author. Tel.: +61362262162; fax: 61362262858. *E-mail address:* Allan.Canty@utas.edu.au (A.J. Canty).

⁰⁰²²⁻³²⁸X/\$ - see front matter © 2003 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2003.12.010

673

Thermodynamic parameters for the Pd(II)/Pd(IV) equilibrium have been determined and the Pd(IV) species shown to decompose by $C(sp^3)$ –Se bond formation. Carbon(sp³)–selenium coupling is also observed on the reaction of (ClC₆H₄Se)₂ with PdMe₂(dmpe) (4) and Pd(SeC₆H₄Cl)Me(dmpe) (5) [dmpe = 1,2-bis(dimethylphosphino)ethane], both C(sp³)–Se and C(sp²)–Se coupling for PdMeTol(dmpe) (7) (Tol = 4-tolyl), and C(sp²)–Se coupling for Pd(SeC₆H₄Cl)Tol(dmpe) (8). The stable Pt(IV) complex Pt(SeC₆H₄Cl)₂Tol₂(bpy) (10) has been prepared as a model for unstable Pd (SeC₆H₄Cl)₂Me(C₆H₄OMe)(bpy) (2).

2. Results and discussion

2.1. Studies of reactivity

Preliminary NMR studies at low temperature indicated the presence of the equilibrium shown in Scheme 1 with the Pd(IV) complex (2) dominant at low temperatures. The Pd(IV) complex (2) was isolated from reactions at -40 °C using an excess of diselenide, allowing confirmation of assignment of NMR spectra for the equilibrium, and allowing a study of the equilibrium over a temperature range using a pure sample of the complex. Complex 2 exhibits two pyridyl group environments and one selenolate environment, consistent with a trans orientation for the selenolate ligands as observed in crystal structure analyses of $Pd(SePh)_2Me_2$ (L₂) (L₂ = bpy, 1,10-phenanthroline) and the Pt(IV) complex $Pt(SeC_6H_4Cl)_2Tol_2(bpy)$ (10) (see below). Equilibrium constants for the forward reaction of Scheme 1 were estimated from ¹H NMR integrations, and a plot of $\ln K$ versus T^{-1} , leading to estimation of $\Delta H = -130 \pm 12$ kJ mol⁻¹ and $\Delta S = -472 \pm 49$ J K⁻¹ mol⁻¹. At higher temperatures (-25 to -20 °C) very small amounts of reductive elimination products were apparent and, although the decomposition may have minimal impact on the determination of equilibrium constants, the values determined are not considered sufficiently reliable to allow detailed comparison with related data for platinum chemistry referred to above [6].

The palladium(II) reagent is stable at -25 °C, allowing determination of the decomposition behaviour of **2** to be as shown in Eq. (3), together with a small quantity (<5%) of Me–C₆H₄OMe. Complex **3** was identified by ¹H NMR spectroscopy (two pyridyl ring

environments, one selenolate and 4-methoxyphenyl environment) and Me–SeC₆H₄Cl by NMR and GC–MS.

$$Pd(SeC_{6}H_{4}Cl)_{2}Me(C_{6}H_{4}OMe)(bpy) (2)$$

$$\rightarrow Pd(SeC_{6}H_{4}Cl)(C_{6}H_{4}OMe)(bpy) (3)$$

$$+ Me-SeC_{6}H_{4}Cl$$
(3)

An extension of this approach to include a complex containing a bidentate phosphine, PdMe₂(dmpe) (4) led to the formation of Me–SeC₆H₄Cl at –15 °C and the isolation of Pd(SeC₆H₄Cl)Me(dmpe) (5) without detection of a potential Pd(IV) intermediate (Eq. (4)). Complex 5 was identified by ¹H and ³¹P{¹H}NMR spectroscopy and a crystal structure analysis (see below) and, on addition of a second equivalent of (ClC₆H₄Se)₂, it forms Pd(SeC₆H₄Cl)₂(dmpe) (6) and Me–SeC₆H₄Cl (Eq. (5)). In similar reactions, PdMeTol(dmpe) (7) forms predominantly Pd(SeC₆H₄Cl)Tol(dmpe) (8) and Me–SeC₆H₄Cl (Eq. (6)); addition of a second equivalent of (ClC₆H₄Se)₂ results in cleavage of Pd–Me and Pd–Tol bonds of 5 and 8 according to Eqs. (5) and (7), respectively.

$$PdMe_{2}(dmpe) (4) + (ClC_{6}H_{4}Se)_{2}$$

$$\rightarrow Pd(SeC_{6}H_{4}Cl)Me(dmpe) (5) + Me-SeC_{6}H_{4}Cl$$
(4)

$$\begin{split} & \operatorname{Pd}(\operatorname{SeC}_{6}\operatorname{H}_{4}\operatorname{Cl})\operatorname{Me}(\operatorname{dmpe}) \ (\textbf{5}) + \left(\operatorname{ClC}_{6}\operatorname{H}_{4}\operatorname{Se}\right)_{2} \\ & \to \operatorname{Pd}(\operatorname{SeC}_{6}\operatorname{H}_{4}\operatorname{Cl})_{2}(\operatorname{dmpe}) \ (\textbf{6}) + \operatorname{Me-SeC}_{6}\operatorname{H}_{4}\operatorname{Cl} \qquad (5) \end{split}$$

$$\begin{aligned} \text{PdMeTol(dmpe)} & (\textbf{7}) + (\text{ClC}_6\text{H}_4\text{Se})_2 \\ \rightarrow & \sim 0.8[\text{Pd(SeC}_6\text{H}_4\text{Cl})\text{Tol(dmpe)} \ (\textbf{8}) + \text{Me-SeC}_6\text{H}_4\text{Cl}] \\ & + & \sim 0.2[\text{Pd(SeC}_6\text{H}_4\text{Cl})\text{Me(dmpe)} \ (\textbf{5}) \\ & + & \text{Tol-SeC}_6\text{H}_4\text{Cl}] \end{aligned}$$

$$\begin{aligned} &\mathsf{Pd}(\mathsf{SeC}_6\mathsf{H}_4\mathsf{Cl})\mathsf{Tol}(\mathsf{dmpe}) \ (\mathbf{8}) + (\mathsf{ClC}_6\mathsf{H}_4\mathsf{Se})_2 \\ &\to \mathsf{Pd}(\mathsf{SeC}_6\mathsf{H}_4\mathsf{Cl})_2(\mathsf{dmpe}) \ (\mathbf{6}) + \mathsf{Tol}\mathsf{-}\mathsf{SeC}_6\mathsf{H}_4\mathsf{Cl} \qquad (7) \end{aligned}$$

The reaction of Eq. (2) indicates that $C(sp^3)$ –Se rather than $C(sp^2)$ –Se coupling occurs from Pd(IV) centres containing nitrogen donor ligands. Palladium(IV) intermediates may occur in the reactions of Eqs. (4)–(7), and if so, the reaction of Eq. (6) is consistent with the preference for $C(sp^3)$ –Se coupling. In related studies, Steinborn and coworkers [11] found that PdMe₂(dppe) [dppe = 1,2-bis(diphenylphosphino)ethane] reacts with (PhSe)₂ to form Pd(SePh)Me(dppe) (91%) and Pd(SePh) 2(dppe) (9%). Although the palladium(IV) complex **2**

Scheme 1.

proved to be too unstable to allow successful attempts to obtain crystals suitable for X-ray diffraction, a related arylplatinum(IV) complex $Pt(SeC_6H_4Cl)_2Tol_2(bpy)$ (10) was readily obtained on reaction of $PtTol_2(bpy)$ (9) with $(ClC_6H_4Se)_2$ in acetone and crystals obtained from $CH_2Cl_2/diethyl$ ether.

2.2. Structural studies of 5 and 10

The results of the single crystal X-ray structure determinations are consistent with the above stoichiometries and connectivities, despite, in the case of 10, difficulties associated with the material and solvent disorder which somewhat adversely affected the precision of the study (Fig. 1(a), Tables 1 and 2). Also, for this complex, one-half of the formula unit comprises the asymmetric unit, the substrate molecule and one of the solvent molecules being disposed about crystallographic 2-axes, which, in the case of the substrate, pass through the metal atom and the mid-point of the bpy ligand. Displacement parameter amplitudes are rather high, particularly at the molecular peripheries, possibly indicating minor unresolved disorder, and thus geometries should be treated with caution. Disorder is also resolvable in one of the bridging methylene groups of the dmpe ligand of 5, apparently impacting on the displacement parameters of the nearby methyl groups of the ligand, disorder not being resolvable in the latter.

With these reservations, the Pt–Se bond distance [2.519(1) Å] in **10** is similar to those reported for Pt(SePh)₂Me₂(L₂) [L₂ = bpy (2.498(1) Å), 1,10-phenan-throline (2.491(1), 2.486(1) Å], the Pt–N distance [2.140(9) Å] is similar to that in the latter complexes [2.162(5); 2.150(5), 2.168(6) Å], and the Pt–C distance

Table 1 Selected geometrics for Pd(SeC H Cl)Me(dmme) (5)

Fig. 1. Projections of molecules of (a) $Pd(SeC_6H_4Cl)Me(dmpe)$ (5) and (b) $Pt(SeC_6H_4Cl)_2Tol_2(bpy)$ (10) in its chloroform solvate 10·3CHCl₃.

[2.02(1) Å] is also similar [2.055(8); 2.058 (9), 2.049(8) Å]. The Pd–Se distance in **5** [2.4483(8) Å] compares well with Pd(SePh)₂(dppe) [2.444(1), 2.480(1) Å] which also has the selenolate group trans to a phosphine donor [12].

Atoms	Parameter	Atoms	Parameter
Distances (\mathring{A})			
Pd–P(1)	2.230(1)	Pd-C(0)	2.116(6)
Pd-P(2)	2.305(2)	Pd–Se	2.4483(8)
C(4)–Cl(4)	1.746(6)	Se–C(1)	1.916(6)
Angles (°)			
P(1)-Pd-P(2)	85.79(8)	P(2)–Pd–C(0)	175.2(2)
P(1)-Pd-C(0)	89.4(2)	P(2)–Pd–Se	88.20(4)
P(1)–Pd–Se	173.78(6)	C(0)–Pd–Se	96.6(2)
Pd–P(1)–C(11)	118.5(2)	Pd–P(2)–C(21)	117.9(3)
Pd-P(1)-C(12)	117.1(4)	Pd-P(2)-C(22)	117.5(2)
Pd-P(1)-C(01)	107.1(5)	Pd-P(2)-C(02)	107.5(2)
Pd-P(1)-C(01')	105.9(5)	Pd–Se–C(1)	110.7(2)
Torsion angles (carbon atoms der	noted by number only)		
P(2)-Pd-P(1)-C(01)	20.8(5)	P(1)-Pd-P(2)-C(02)	0.2(3)
P(2)-Pd-P(1)-C(01')	-17.5(5)	Pd-P(2)-C(02)-C(01)	-26.6(8)
Pd-P(1)-C(01)-C(02)	-43.5(9)	Pd-P(2)-C(02)-C(01')	28.3(10)
Pd-P(1)-C(01')-C(02)	39.7(11)	P(2)-C(02)-C(01)-P(1)	45.0(10)
Pd-Se-C(1)-C(2)	97.2(5)	P(2)-C(02)-C(01')-P(1)	-43.1(11)

Pd lies 0.031(2) out of the P₂SeC donor plane ($\chi^2 = 36$); the P₂SeC/phenyl C₆ interplanar dihedral angle is 88.3(2).

Table 2 Selected geometries for $Pt(SeC_6H_4Cl)_2Tol_2(bpy)$ (10) in (10 · 3CHCl₃) primed atoms are related by the intramolecular 2-axis

Atoms	Parameter	Atoms	Parameter
Distances (Å)			
Pt-C(01)	2.02(1)	Se–C	1.93(1)
Pt-N(1)	2.140(9)	C(4)–Cl(4)	1.77(2)
Pt–Se	2.519(1)		
Angles (°)			
Se-Pt-N(1)	95.2(2)	N(1)-Pt-N(1')	76.4(4)
Se–Pt–N(1')	85.0(2)	N(1)-Pt-C(01)	97.8(5)
Se-Pt-C(01)	92.0(3)	N(1)-Pt-C(01')	173.2(4)
Se-Pt-C(01')	87.8(3)	C(01)-Pt-C(01')	88.1(6)
Se-Pt-Se'	179.7(2)	Pt-Se-C(11)	102.0(3)

Interplanar dihedral angles: N(1,1') C(01,01')/C(1-6), C(01-06) 14.0(4), 53.1(5); C(1-6)/C(01-06) is 44.0(5).

3. Experimental

The reagents $PdMe(C_6H_4OMe)(bpy)$ [7], $PdMe_2$ (dmpe) [8] PdMeTol(bpy) [7] and $PtTol_2(bpy)$ [9] were prepared as described. Solvents were dried and distilled, stored under nitrogen, and all procedures were carried out under nitrogen. NMR spectra were recorded on a Varian Unity Inova 400 MHz wide bore instrument, at 399.7 MHz for ¹H and 161.8 MHz for ³¹P, at room temperature unless indicated otherwise. Chemical shifts are given in ppm relative to SiMe₄ and external H₃PO₄. Microanalyses were performed by the Central Science Laboratory, University of Tasmania. GC–MS analyses were performed using an HP5890 gas chromatograph equipped with an HP5790 MSD and a 25 m × 0.32 mm HP1 column (0.52 m film thickness, He at 10 psi).

3.1. Synthesis of $Pd(SeC_6H_4Cl)_2Me(C_6H_4OMe)(bpy)$ (2)

A solution of $(ClC_6H_4Se)_2$ (0.060 g, 0.157 mmol) in CH_2Cl_2 (2 ml) was added to solid PdMe(C_6H_4OMe) (bpy) (0.038 g, 0.098 mmol) precooled to -40 °C. The solution quickly became dark red and stirring was continued for 2 h at -40 °C. The volume was reduced to near dryness, and pentane added to precipitate a red solid which was collected by filtration, rinsed with pentane $(2 \times 3 \text{ ml})$ and diethyl ether (2 ml) and dried under a vacuum. The product was stored at -20 °C. Yield: 0.070 g (93%). ¹H NMR (CDCl₃, -50 °C): δ 8.97 $(d, 1H, {}^{3}J = 5.2 \text{ Hz}, H6), 8.25 (d, 1H, {}^{3}J = 5.2 \text{ Hz}, H6'),$ $7.93(t, {}^{3}J = 7.6 \text{ Hz}, \text{H4}), 7.79 (t, {}^{3}J = 7.6 \text{ Hz}, \text{H4}'), 7.69$ (d, 1H, ${}^{3}J = 8.0$ Hz, H3), 7.53 (m, 4H, H3', H5 and ortho-C₆H₄), 7.25 m, H5'), 6.90 (d, 2H, ${}^{3}J = 8.4$ Hz, meta-C₆H₄), 6.48 (d, 4H, ${}^{3}J = 8.0$ Hz, SeC₆H₄Cl), 6.42 $(d, 4H, {}^{3}J = 8.0 \text{ Hz}, \text{SeC}_{6}H_{4}\text{Cl}), 3.84 (s, 3H, OMe), 2.58$ (s, 3H, PdMe). Anal. Calcd.: C, 47.05; H, 3.42; N, 3.66. Found: C, 46.98; H, 3.36; N, 3.58%.

3.2. Synthesis of $Pd(SeC_6H_4Cl)Me(dmpe)$ (5)

A solution of $(ClC_6H_4Se)_2$ (0.014 g, 0.038 mmol) in CH₂Cl₂ (2 ml) was added to a stirred solution of $PdMe_2(dmpe)$ (0.011 g, 0.037 mmol) in CH_2Cl_2 (2 ml) at -50 °C. The solution was allowed to warm slowly to ambient temperature with stirring. The volume was reduced to near dryness under a vacuum, and pentane added to precipitate the product as an orange solid which was collected by filtration, rinsed with pentane $(3 \times 5 \text{ ml})$ and dried under a vacuum. Yield: 0.016 g (95%). ¹H NMR (CDCl₃): δ 7.60 (d, 2H, ³J = 8.4 Hz, C_6H_4), 7.01 (d, 2H, ${}^3J = 8.4$ Hz, C_6H_4), 1.88–1.58 (m, 4H, PCH₂), 1.48 (s, 6H, ${}^{2}J_{PH} = 10.0$ Hz, PMe₂), 1.13 (s, 6H, ${}^{2}J_{PH} = 8.4$ Hz, PMe₂), 0.15 (t, 3H, ${}^{3}J_{PH} = 6.8$ Hz and 6.0 Hz, PdMe). ${}^{31}P{}^{1}H{}(CDCl_3)$: δ 21.4. Anal. Calcd.: C, 33.79; H, 5.02. Found: C, 33.78; H, 5.08%.

3.3. Synthesis of $Pd(SeC_6H_4Cl)_2(dmpe)$ (6)

A solution of PdMe₂(dmpe) (0.010 g, 0.036 mmol) and (ClC₆H₄Se)₂ (0.035 g, 0.091 mmol) in CH₂Cl₂ (0.8 ml) was allowed to react at ambient temperature for 2 h to give an orange solution. Pentane was added to precipitate the product, the suspension was centrifuged and the yellow supernatant removed. The orange product was rinsed with pentane (2 × 1 ml) and diethyl ether (2 ml), and dried under a vacuum. Yield: 0.010 g (44%). ¹H NMR (CD₂Cl₂): δ 7.51 (d, 4H, ³J = 8.0 Hz, C₆H₄), 6.97(d, 4H, ³J = 8.0 Hz, C₆H₄), 1.80 (d(br), 4H, ²J_{PH} = 20.0 Hz, PCH₂), 1.42 (d, 12H, ²J_{PH} = 10.8 Hz, PMe₂). ³¹P{¹H}(CD₂Cl₂): δ 37.6. Anal. Calcd.: C, 33.91; H, 3.79. Found: C, 33.77; H, 3.98%.

3.4. Synthesis of PdMeTol(dmpe) (7)

1,2-Bis(dimethylphosphino)ethane (52 µl, 0.31 mmol) was added to a solution of PdMeTol(tmeda) (0.100 g, 0.300 mmol) in benzene (1 ml). After several minutes of stirring a white precipitate formed. Pentane (2 ml) was added and the solution decanted. The white solid was rinsed with pentane (2 × 5 ml) and diethyl ether (2 × 2 ml) and dried under a vacuum. Yield: 0.110 g (100%). ¹H NMR (acetone-d₆): δ 7.21 (t, 2H, J = 7.0 Hz, ortho-Tol), 6.73 (d, 2H, ³J = 6.0 Hz, meta-Tol), 2.14 (s, 3H, Me), 1.38 (d, 6H, ² J_{PH} = 8.0 Hz, PMe₂), 1.17 (d, 6H, ² J_{PH} = 8.0 Hz, PMe₂), 0.01 (dd, 3H, J_{PH} = 7.2 Hz, J_{PH} = 8.8 Hz, PdMe). ³¹P{¹H} (acetone-d₆): δ 25.5 (d, J_{PP} = 24.0 Hz), 22.3 (d, J_{PP} = 24.4 Hz).

3.5. Synthesis of $Pt(SeC_6H_4Cl)_2(Tol)_2(bpy)$ (10)

A solution of $(ClC_6H_4Se)_2$ (0.030 g, 0.080 mmol) in acetone (1 ml) was added to a stirred solution of

Pt(Tol)₂(bpy) (0.0398 g, 0.080 mmol) in acetone (5 ml). The solution was stirred at ambient temperature for 12 h, the solvent removed in a vacuum, and the solid washed with diethyl ether (3×1 ml). The solid was recrystallised from CH₂Cl₂/diethyl ether to give orange –red crystals of the product. Yield: 0.030 g (41%). ¹H NMR (CDCl₃): δ 8.95 (d, 2H, ³J = 5.5 Hz, J_{PtH} ~ 18 Hz, H6), 7.77 (td, ³J = 8.0 Hz, ⁴J = 1.2 Hz, H4), 7.47 (m, 6H, H3 and *ortho*-Tol), 7.36 (t, ³J = 6.2 Hz, H5), 6.92 (d, 4H, ³J = 8.4 Hz, *meta*-Tol), 6.63 (d, 4H, ³J = 8.0 Hz, SeC₆H₄Cl), 6.36 (d, 4H, ³J = 8.4 Hz, SeC₆H₄Cl), 2.35 (s, 6H, Me). Anal. Calcd.: C, 47.28; H, 3.31. Found: C, 47.26; H, 3.38%.

3.6. NMR studies

In a typical experiment for the determination of equilibrium constants for the reaction of Scheme 1, a sample of $Pd(SeC_6H_4Cl)_2Me(C_6H_4OMe)(bpy)$ (2) (0.0040 g, 0.0052 mmol) was cooled to the required temperature then dissolved in CD_2Cl_2 (600 µl). The sample was kept at the required temperature for several hours until equilibrium was reached. The concentration of each compound was determined by integration, and 5% tolerance in integration was assumed ($K = 35408 \pm$ 7750 at -40 °C, 4628 ± 950 at -35 °C, 2010 ± 400 at -30°C, 754 ± 145 at -25 °C, 116 ± 20 at -20 °C). In a typical experiment relating to the reactions of Eqs. (4)–(7), a solution of $(ClC_6H_4Se)_2$ (0.0040 g, 0.0105 mmol) in CD₂Cl₂ (0.4 ml) was added to a solution of PdMeR (dmpe) (R = Me, Tol) (0.0105 mmol) in CD_2Cl_2 (0.2 ml). The sample was monitored by ¹H and/or ³¹P NMR spectroscopy to the completion of the reaction. To this was added a second equivalent of (ClC₆H₄Se)₂ (0.0040 g, 0.0105 mmol) and the reaction monitored to its completion. NMR spectra (in CD_2Cl_2) of products are listed above for complexes 5 and 6; Me–SeC₆H₄Cl: δ 7.35 (d, 2H, ${}^{3}J = 8.4$ Hz), 7.23 (d, 2H, ${}^{3}J = 8.8$ Hz), 2.34 (s, 3H, Me); Tol-SeC₆H₄Cl: δ 7.40 (d, 2H, ³J = 8.0 Hz), 7.31 (m) and 7.21 (m) overlapping, 7.13 (d, 2H, ${}^{3}J = 7.8$ Hz), 2.33 (s, 3H, Me); Pd(SeC₆H₄Cl) $(C_6H_4OMe)(bpy)$ (3): δ 9.06 (d, 1H, ${}^3J = 4.0$ Hz, bpy), 8.10 (m, 2H, bpy), 8.00 (m, 2H, bpy), 7.92 (d, ¹H, ${}^{3}J = 5.2$ Hz, bpy), 7.69 (d, 2H, ${}^{3}J = 8.4$ Hz, SeC₆H₄Cl or C_6H_4OMe), 7.45 (m, 1H, bpy), 7.35 (m, 1H, bpy) overlapping with other resonances), 7.21 (d, 2H, ${}^{3}J =$ 8.4 Hz, SeC₆H₄Cl or C₆H₄OMe), 6.86 (d, 2H, ${}^{3}J = 8.4$ Hz, SeC₆H₄Cl or C₆H₄OMe), 6.67 (d, 2H, ${}^{3}J = 8.0$ Hz, SeC_6H_4Cl or C_6H_4OMe), 3.74 (s, 3H, OMe); $Pd(SeC_6H_4Cl)Tol(dmpe)$ (8): δ 7.13 (m, 2H, Tol or SeC₆H₄Cl), 6.89 (d(b), 2H, ${}^{3}J = 7.8$ Hz, Tol or SeC₆H₄Cl), 6.82 (d(b), 2H, ${}^{3}J = 6.8$ Hz, Tol or SeC₆H₄Cl), 2.20 (s, 3H, PdTol), 1.70 (m, 4H, CH₂), 1.22 (d, 6H, $J_{PH} = 10.4$ Hz, PMe₂), 1.05 (d, 6H, $J_{PH} = 8.8$ Hz, PMe₂), ³¹P{¹H} δ 28.2 (d, $J_{PP} = 20.9$ Hz), 22.5 (d, $J_{\rm PP} = 20.6$ Hz).

3.7. X-ray data collection and structure determination, and refinement for complexes 5 and 10

Crystals of 5 and $10 \cdot \text{CHCl}_3$ were obtained by recrystallisation from CHCl₃/diethyl ether and CH₂Cl₂/ diethyl ether, respectively, and full spheres of CCD areadetector diffractometer data were measured (Bruker AXS instrument, $2\theta_{max} = 58^\circ$, ω -scans, monochromatic Mo K α radiation, $\lambda = 0.7107_3$ Å; T ca. 153 K) yielding $N_{\text{(total)}}$ reflections, merging to N unique (R_{int} cited) after 'empirical'/multiscan absorption correction (proprietary software), N_0 with $F > 4\sigma(F)$ considered 'observed' and used in the full-matrix least squares refinements, refining anisotropic displacement parameter forms for the nonhydrogen atoms, $(x, y, zU_{iso})_H$ being included and constrained at estimated values. Conventional residuals R, R_w (weights: $(\sigma^2(F) + 0.0004F^2)^{-1})$ on |F| are cited at convergence. Neutral atom complex scattering factors were employed within the Xtal 3.7 program system [10]. Pertinent results are given in Tables 1 and 2 and Fig. 1(b), the latter showing 50% probability displacement amplitudes for the non-hydrogen atoms, hydrogen atoms having arbitrary radii of 0.1 Å. Individual variations in procedure and difficulties are cited as 'variata'.

4. Crystal/refinement data

4.1. $Pd(SeC_6H_4Cl)Me(dmpe)$ (5)

 $C_{13}H_{23}ClP_2PdSe, M = 462.1.$ Orthorhombic, space group $Pna2_1$ (C_{2v}^9 , No. 33), a = 16.919(3), b = 6.1734(9), c = 16.906(3) Å, V = 1766 Å³. D_c (Z = 4) = 1.73₈ g cm⁻³. $\mu_{Mo} = 34$ cm⁻¹; specimen: $0.20 \times 0.17 \times 0.14$ mm; $T_{min/max} = 0.88.2\theta_{max} = 75^\circ$; $N_t = 36023, N = 4731$ ($R_{int} = 0.051$), N_o 2953; $R = 0.034, R_w = 0.037$.

Variata: Within the present space group, one of the bidentate methylene groups is modelled as disordered over a pair of sites, occupancies set at 0.5 after trial refinement. 'Friedel' data were preserved distinct, x_{abs} refining to 0.02(1).

4.2. $Pt(SeC_6H_4Cl)_2(Tol)_2(bpy) \cdot 3CHCl_3$

(10 · 3CHCl₃) \equiv C₃₉H₃₃Cl₁₁N₂PtSe₂, M = 1272.7. Monoclinic, space group C/c (C_{2h}^6 , No.15), a = 24.345 (3), b = 14.405(2), c = 15.848(2) Å, $\beta = 127.032(2)^\circ$, V = 4437 Å³. D_c (Z = 4 f.u.) = 1.90₅ g cm⁻³. $\mu_{Mo} = 55$ cm⁻¹; specimen: 0.35 × 0.12 × 0.12 mm; $T_{min/max} = 0.57$. $2\theta_{max} = 50^\circ$; $N_t = 51575$, N = 3905 ($R_{int} = 0.11$), $N_o = 3260$; R = 0.059, $R_w = 0.072$.

Variata: One of the solvent molecules was modelled as disordered about a crystallographic 2-axis in the present space group. The material presented as substantial, readily desolvating specimens, from which a transparent fragment was excised and transferred to the diffractometer low temperature system.

5. Supporting material

Crystallographic data have been deposited with the Cambridge Crystallographic Data Cente (Deposition Nos. CCDC 222409 and 222410). Copies of the information can be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: +44-1223-336-033; email: deposit@ccdc.cam. ac.uk or www: http://www.ccdc,cam.ac.uk).

Acknowledgements

We thank the Australian Research Council for financial support and Dr. Evan Peacock of the Central Science Laboratory for technical support with NMR spectroscopy.

References

- [1] P.M. Henry, J. Org. Chem. 36 (1971) 1886.
- [2] L.M. Stock, K.-t. Tse, L.J. Vorvick, S.A. Walstrum, J. Org. Chem. 46 (1981) 1757.
- [3] T. Yoneyama, R.H. Crabtree, J. Mol. Catal. A 108 (1996) 35.
- [4] A.J. Canty, M.C. Done, B.W. Skelton, A.H. White, Inorg. Chem. Commun. 4 (2001) 648.
- [5] A.J. Canty, H. Jin, B.W. Skelton, A.H. White, Inorg. Chem. 37 (1998) 3975.
- [6] A. Panunzi, G. Roviello, F. Ruffo, Organometallics 21 (2002) 3503.
- [7] D. Kruis, B.A. Markies, A.J. Canty, J. Boersma, G. van Koten, J. Organomet. Chem. 532 (1997) 235.
- [8] W. de Graaf, J. Boersma, W.J.J. Smeets, A.L. Spek, G. van Koten, Organometallics 8 (1989) 2907.
- [9] M.A. Casado Lacabra, A.J. Canty, M. Lutz, J. Patel, A.L. Spek, H. Sun, G. van Koten, Inorg. Chim. Acta 327 (2002) 15.
- [10] S.R. Hall, D.J. Du Boulay, R. Olthof-Hazekamp (Eds.), The XTAL 3.7 System, University of Western Australia, 2001.
- [11] T. Spaniel, H. Schmidt, C. Wagner, K. Merzweiler, D. Steinborn, Eur. J. Inorg. Chem. (2002) 2868.
- [12] A. Singhal, V.K. Jain, B. Varghese, E.R.T. Tiekink, Inorg. Chim. Acta 285 (1999) 190.